

- 1) Look at the above picture. Why do the cannon balls have different paths? Name all the reasons you can think of. (Hint: Talk about the height and angle of the cannon).
- 2) Go to "Google Images" at http://images.google.com/. Search the word "quadratics."
- 3) Now that you know what quadratics look like, describe what they are in your own words.
- 4) What does the path of the cannon balls in the picture above have to do with quadratics?
- 5) Draw 2 examples of things that have the shape of a parabola in everyday life. (Hint: if you can't think of any use Google Images to search "parabolas in everyday life.")
- 6) Draw 2 examples of what quadratics can look like.

- 7) Visit this website, and read through the webpage. Then answer the questions that follow. http://msHarmony.weebly.com
- 8) What is the quadratic equation? What is it for?
- 9) When you have a quadratic equation, why can't the coefficient "a" in front of the x^2 be 0?
- 10) Where do quadratics get their name?
- 11) What does "quad" mean? Why does the word "quad" describe a square?
- 12) Give me examples!

Examples of Quadratic Equations	NON-Examples of Quadratic Equations
1.	1.
2.	2.
3.	3.

- 13) In the "Standard" Quadratic Equation, what do a, b, and c represent?
- 14) Check out the "Quadratic Equation Explorer." What happens when "a" is less than -1?
- 15) What happens to a parabola when "a" is greater than 1?
- 16) What happens when "b" is positive? What happens when "b" is negative?
- 17) What happens when "c" is positive? What happens when "c" is negative?
- 18) Draw arrows to a, b, and c in the Standard Quadratic Equation below. Explain how each coefficient affects the how the parabola looks.

$$y = ax^2 + bx + c$$

19) What are the "solutions" to a graphed parabola? Where are they on the graph?

- 20) What are all the synonyms for the word "solution"?
- 21) What are the 5 Ways To Find The Solutions to A Quadratic?

How to Find Solutions to a Quadratic

FACTORING QUADRATICS

- 22) What does it mean to "factor a quadratic"? What are you looking for?
- 23) What are the factors of $x^2 + 3x 4$?
- 24) Prove that the factors of $x^2 + 3x 4$ are (x + 4) and (x 1). Use the generic rectangle below to multiply (x + 4) and (x 1). When you add (find the sum of) the areas of each of the small areas, what do you get?

